DAV BR PUBLIC SCHOOL, BINA HALF YEARLY EXAMINATION (SAMPLE PAPER)(2024-25) CLASS: XII SUBJECT: APPLIED MATHEMATICS

TIME: 3:00 HOURS

MM:80

Read the following instructions very carefully and strictly follow them:

- 1. This Question paper contains 38 questions. All questions are compulsory.
- 2. This Question paper is divided into five Sections A, B, C, D and E.
- 3. In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- 4. In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- 5. In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- 6. In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- 7. In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- 8. Use of calculators is not allowed.

Section A				
1.	-8(mod 5) a) 1 b) 2	c) 3	d) 4	1
2.	In what ratio must a grocer mix two types to get a mixture worth $\gtrless 92$ per kg			1
	a) 2:1 b) 1:2	c) 8:7	d) 4:3	
3.	A man rows 60 km upstream and 40 km do boat?		-	1
	a) 1km/h b) 8 km/h	c) 5km/h	d) 3km/h	
I .	Rakesh and suresh invest in a business in t and Rakesh's share profit is ₹18000 then t	he total profit is		1
	a) ₹46000 b) ₹45500	c) ₹44000	d) ₹45000	
5.	If $Ix-2I \ge 7$, $x \in R$ then a) $x \in [-5, 9]$ c) $x \in (-\infty, -5)U$ [9, ∞)	b) $x \in (-5, 9]$ d) $x \in (-\infty, -5)U$	J (9,8)	1
6.	The length of a rectangle is double the breathen a) Breadth > 20 <i>cm</i> b) breadth	_	_	1
7.	If $\begin{vmatrix} x + 1 & -2 \\ x & 2x - 3 \end{vmatrix} = 3$, then the integral v a) $-2, \frac{3}{2}$ b) $\frac{1}{2}$		d) 3	1
8.	If A is a square matrix, A' is its transposea) A symmetric matrixc) A unit matrix	then $\frac{1}{2}(A + A')$ is b) A skew symmetry d) An elementary		1

9.	If A and B are square matric a) Skew symmetric mat c) Null matrix	trix b	AB' – BA' is a) Symmetric matrix) unit matrix		1
10.	If A is anon singular matrix, a) IAI \neq IA'I b)	then $IA^{-1}I \neq A^{-1}$	c) IAA'I = IA^2I	d) IAI+IA'I $\neq 0$	1
11.	Let A be square matrix of or a) 8 b)		ue of I 5A I, where IA) 400	AI = 4 d) 256	1
12.	The maximum value of $\frac{logx}{x}$ a) e b)		$) \frac{1}{e}$	d) $\frac{2}{e}$	1
13.	If x is a real, the minimum v	alue of x			1
14.	If $\int xe^{kx^2} dx = \frac{1}{4}e^{2x^2} + C$ a) 4 b)	-2 c)) 2	d) 1	1
15.	$\int \frac{e^{6\log x} - e^{5\log x}}{e^{4\log x} - e^{3\log x}} dx$ a) $\frac{1}{3}x^3 + C$ b)	$\frac{1}{5}x^{5} + C$ c) $\frac{1}{6}x^6 + C$	d) $\frac{3}{5}x^5 + C$	1
16.	distance A beats B?		econds and B reaches	s in 70 seconds By how much d) 200m	1
17.	If $\int_0^a 3x^2 dx = 8$ then value a) -2 b)) 3	d) -3	1
18.	The least value of the function $f(x) = ax + \frac{b}{x}$ (x> 0, b > 0, a > 0) is				
			e) ab	d) 2ab	
19.	The function $f(x)=x^x$, $x > 0$, a) $x=e$ b)	has a stationary point $X = \frac{1}{e}$ c	at) x=1	d) $x=\sqrt{e}$	1
20.	A boat running downstream distance upstream it takes 4 a) 4km/h b			e	1
		Sect	tion B		
21.	Two pipes A and B can fill the tank in 24 minutes and 36 minutes respectively. If both the pipes are opened together, the find the time in which the tank will be filled completely.			2	
22.	A motorboat can row at the speed of 8km/h in still water, If the river is flowing at 4km/h and it takes 16 hours for around trip; find the distance between two points.			2	
23.	Solve the following system of equations by Cramer's rule: 2x+3y=10, $x+6y=4$			2	

24.	If $A = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 5 & 3 \\ 2 & 4 & 6 \end{bmatrix}$, Show that $A + A^T$ is asymmetric matrix. Where A^T is the transpose of the matrix.	2
25.	If $y = \log_a x$ then find $\frac{d^2 y}{dx^2}$	2
	Section C	
26.	Given the total cost function for x units of a commodity as $C(x) = \frac{1}{3}x^{3} + x^{2} - 16x + 2.$ Find (i) The marginal cost function (ii) The average cost function.	3
27.	Evaluate: $\int \frac{x+e^{2x}}{x^2+e^{2x}} dx$	3
28.	Find the intervals in which the following function $f(x)=2x^3-3x^2-36x+7$ is strictly increasing or strictly decreasing	3
29.	Express the matrix $A = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$ as the sum of a symmetric and skew symmetric matrix.	3
30.	Using properties of determinants prove that $\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2 (a+b+c)^3$	3
31.	If A= $\begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}$, find f(A), where f(x) = x ² - 2x + 3	3
	Section D	
32.	Evaluate: $\int \frac{1}{x^2 (x^4+1)^{3/4}} \mathrm{d}x$	5
33.	Using matrix method , solve the following system of equations: X - 2y = 10 2x + y + 3z = 8 -2y + z = 7	5
34.	Prove that the area of a right angled triangle of given hypotenuse is maximum when the triangle is isosceles.	5
35.	Using properties of determinants prove that: $\begin{vmatrix} a & b-c & c-b \\ a-c & b & c-a \\ a-b & b-a & c \end{vmatrix} = (a+b-c) (b+c-a) (c+a-b)$	5
	Or	
	$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz (x - y) (y - z) (z - x)$	

	Section E		
36.	Susy is rowing a boat. She takes 6hours to row 48 km upstream whereas she takes 3 hours to go the same distance downstream. Based on the information , answer the following questions:		
	 (i) What is her speed of rowing in still water? (a) 8km/h (b) 12km/h (c) 10km/h (d) 16km/h (ii) What is the speed of stream? (a) 6km/h (b) 4km/h (c) 8km/h (d) 12km/h (iii) What is her average speed? 		
37.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	4x1	
38.	 Mr. Amar is an architect. He designed a building and provided an entry door in the shape of a rectangle surmounted by a semicircular opening. The perimeter of the door is 10m. Based on this information, answer the following questions (i) If 2x meters and y meters be the breadth and the height of the rectangular part of the door, then the relation between x and y is (a) y= 5- ¹/₂(π + 2)x (b) y= 10 - ¹/₂(π + 2)x (c) y= 5- x-πx (d) y= 10 - (π + 2)x² (e) y= 10x - (π + 2)x² (f) y= 10x - ¹/₂(π + 4)x² (f) y= 10x - ¹/₂(π + 4)x² (ii) To allow maximum airflow inside the building, the width of the door 	4x1	

(a)
$$\frac{10}{\pi+4}$$
 m (b) $\frac{20}{4+\pi}$ m (c) $\frac{20}{2+\pi}$ m (d) $\frac{40}{2+\pi}$ m

(iv) To allow maximum airflow inside the building ,the height of the door is $(a) \frac{5}{4+\pi} m$ (b) $\frac{10}{4+\pi} m$ (c) $\frac{20}{4+\pi} m$ (d) $\frac{30}{4+\pi} m$

XXXXXXXX