DAV BR PUBLIC SCHOOL, BINA PRACTICE PAPER SESSION 2023-24 Subject: MATHEMATICS

Class IX

Time Allowed 3 HRS

MM: 80

1

General Instructions: 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.

Section - A carries 20 marks weightage, Section - B carries 10 marks weightage, Section - C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with total weightage of 12 marks.

Section – A: 3. It comprises of 20 MCQs of 1 mark each.

Section – B: 4. It comprises of 5 VSA type questions of 2 marks each.

Section – C: 5. It comprises of 6 SA type of questions of 3 marks each.

Section – D: 6. It comprises of 4 LA type of questions of 5 marks each.

Section – E: 7. It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks question in each case-study. 8. Internal choice is provided in 2 questions in Section – B, 2 questions in Section – C, 2 questions in Section – D. You have to attempt only one of the alternatives in all such questions.

SECTION - A

	SECTION - A				
1	A rational number between $\sqrt{2}$ and $\sqrt{3}$ is	1			
	(a) $\frac{\sqrt{2} + \sqrt{3}}{2}$ (b) $\frac{\sqrt{2} \cdot \sqrt{3}}{2}$ (c) 1.5 (d) 1.8				
2	The number obtained on rationalising the denominator of $\frac{1}{\sqrt{7}-2}$ is	1			
	(a) $\frac{\sqrt{7}+2}{3}$ (b) $\frac{\sqrt{7}-2}{3}$ (c) $\frac{\sqrt{7}+2}{5}$ (d) $\frac{\sqrt{7}+2}{45}$				
3	The degree of the polynomial $4x^4 + 0x^3 + 0x^5$ is	1			
	(a) 0 (b) 4 (c) 3 (d) 5				
4.	If y coordinate of a point is zero, then this point always lies	1			
	(a) in I quadrant (b) in II quadrant (c) on x - axis (d) on y - axis				
5.	How many linear equations in x and y can be satisfied by $x = 5$ and $y = 7$?				
	(a) Only one (b) two (c) infinitely many (d) three	1			
6.	Abscissa of all the points on y-axis is				
	(a) 0 (b) 1 (c) 2 (d) any number	1			
7.	$2\sqrt{3} + \sqrt{3}$ is equal to	1			
	(a) $2\sqrt{6}$ (b) 6 (c) $3\sqrt{3}$ (d) $4\sqrt{6}$				
8.	The complement of 65 [°] is	1			

Class IX

	(a) 15^{0} (b) 25^{0} (c) 115^{0} (d) 125^{0}	
9.	Which of the following is a criterion for congruence of triangles ?	1
	(a) SAS (b) ASA (c) SSA (d) (a) and (b)	
10.	In triangles ABC and PQR, if $\angle A = \angle R, \angle B = \angle P$ and BC = QR. The two triangles will	1
	be congruent by axiom	
	(a) SAS (b) ASA (c) SSS (d) RHS	
11.	If the opposite angles of a quadrilateral are bisected by two diagonals, then it must be	1
	(a) rectangle (b) parallelogram (c) trapezium (d) square	
12.	If angles A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4,	1
	then ABCD is a	
	(A) rhombus (B) parallelogram (C) trapezium (D) kite	
13.	AD is a diameter of a circle and AB is a chord. If $AD = 34$ cm, $AB = 30$ cm, the distance	1
	of AB from the centre of the circle is :	
	(A) 17 cm (B) 15 cm (C) 4 cm (D) 8 cm	
14.	If two diameters of a circle intersect each other at right angles, then the quadrilateral	1
	obtained by joining their end points is	
	(a) square (b) rectangle (c) parallelogram (d) rhombus	
15.	If 2r is the radius and h is the height of a cylinder, then its volume will be	1
	(a) $2\pi rh$ (b) $\pi r^2 h$ (c) $4\pi r^2 h$ (d) $2\pi r^2 h$	
16.	In a frequency distribution, the mid value of a class is 10 and the width of the class is 6.	1
	The lower limit of the class is	
	(a) 6 (b) 7 (c) 8 (d) 12	
17.	In the class intervals $10 - 20$, $20 - 30$, the number 20 is included in	1
	(a) $10-20$ (b) $20-30$ (c) Both the intervals (d) None of these	
18.	POQ is a line. The value of x is	1
	N 1	
	40° $4x$ $3x$	
	(a) 20° (b) 25° (c) 30° (d) 35°	
	For questions 19 and 20, two statements are given – one labelled Assertion(A) and the	

other labelled Reason (R). Select the correct answer to these questions from the codes (i), (ii), (iii) and (iv) as given below:

(i) Both A and R are true and R is the correct explanation of the assertion

(ii) Both A and R are true but R is not the correct explanation of the assertion

	(iii) A is true, but R is false				
	(iv) A is false, but R is true				
19.	Assertion (A): the value of 'k' for which the polynomial $(x - 3)$ is a factor of the 1				
	polynomial $x^3 - x^2 - kx - 3$ is 5.				
	Reason R : if $(x - a)$ is a factor of the polynomial $f(x)$, then $f(-a) = 0$.				
	(a) (i) (b) (ii) (c) (iii) (d) (iv)				
20.	Assertion (A) : the sides opposite to equal angles of a triangle are not equal.				
	Reason (R): angle opposite to equal sides of a triangle are equal.				
	a) (i) b) (ii) c) (iii) d) (iv)				
	SECTION – B				
	(All questions are compulsory. In case of internal choice, attempt any one question only)				
21.	If $a^2 + b^2 + c^2 = 19$ and $ab + bc + ca = 15$, find the value of $a + b + c$.	2			
22.	Plot the points (7, 7), (-6, -6), (-2, -3) on the graph paper. Are they collinear?	2			
23.	In the given fig. show that length $AH > sum of lengths of AB + BC + CD$.	2			
	← + + + + + + + + + + + + + + + + + + +				
	A B C D E F G H				
24.	Find the area of a triangle whose perimeter is 180 cm and its two sides are 80 cm and 18	2			
	cm.				
25.	Curved surface area of a cone is 308 cm^2 and its slant height is 14 cm. find radius of base				
	and total surface area of the cone.				
	SECTION – C				
26.	If $a = \sqrt{3} + 1$, find the value of $a^4 + \frac{1}{a^4}$				
	OR	3			
	Find the values of a and b if $\frac{3+2\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$				
27.	If x = $-\frac{1}{3}$ is a zero of the polynomial p(x) = $27x^3 - ax^2 - x + 3$, find the value of a	3			
	OR				
	Factorise: $a^{3}(b-c)^{3} + b^{3}(c-a)^{3} + c^{3}(a-b)^{3}$				
28.	If the points $(0, 2)$ and $(3,0)$ satisfy a linear equation $y = mx + c$ then consider the linear				
	equation in the form $ax + by + c = 0$	3			
29.	In fig. AB CD EF. Find the value of x.				
		3			

30. ABC is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.

OR

ABC is a right triangle with AB = AC. Bisector of $\angle A$ meets BC at D. Prove that BC = 2 AD.

31. Find the area of a triangle whose perimeter is 180 cm and its two sides are 80 cm and 183 cm. calculate the altitude of triangle corresponding to its shortest side.

SECTION - D

- 32. The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + b$, when divided by (x 1) and (x + 1), leaves the remainders 5 and 19 respectively. Find the values of a and b. hence, find the remainder when p(x) is divided by (x - 3).
- **33.** Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.

OR

Show that the quadrilateral formed by joining the mid-points of a rhombus, taken in order, form a rectangle.

- 34. A circular part of radius 20 m is situated in a colony. Three boys Ankur, Syed and David 5 are sitting at equal distances on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
- **35.** The paint in a certain is sufficient to paint an area equal to 9.375 m². How many bricks of **5** dimensions $22.5 \times 10 \ cm \times 7.5 \ cm$ can be painted out of this container?

SECTION - E

36. Ajay is on a road trip in his car. He start his trip on a road at point A and covers a distance of $\left(x^3 + \frac{1}{x^3}\right)$ km in the first lap and reaches the destination B. then he comes back on the same road for a distance of $5\left(x^2 + \frac{1}{x^2}\right)$ km to reach the destination C. then he again return back on the same road covering a distance of $\left(x + \frac{1}{x}\right)$ km to reach his destination D. if the journey in the direction of AB is taken as positive and $x = \frac{5+\sqrt{21}}{2}$ km then answer the following questions based on this information.

3

5

5

- (a) how much distance did he travel in the third trip?
- (b) how much distance he cover in his first trip?
- (c) what is the total distance travelled b Ajay in this trip?
- 37. In a school canteen, pizza and burgers are available as refreshment. Sumit purchased two 4

pizza and one burger and paid ₹250.

(a) form the linear equation.

(b) find the solution of above equation.

- (c) how many solution are possible for this equation?
- 38. Family income can not be considered the only determinant of how individuals prove them selves, but it has a profound impact on physical, mental and social well-being. A family with a monthly income of ₹28000 had planned the following expenditure per month under various heads :

heads	Expenditure(in thousand rupees)
Rent	4
Grocery	6
Education on children	5
Medicine	2
Fuel	2
Entertainment	1
Saving	4
Miscellaneous	4

Stud the data given above and answer the following questions :

- (a) what does the number against each head represent?
- (b) state the amount of expenditure occur by the family in the entertainment head?
- (c) in which head expenditure is triple that of medical expenses?